Sum of Cubes

$\definecolor{colorRed}{RGB}{255,50,50}\definecolor{colorGreen}{RGB}{50,205,50}\definecolor{colorBlue}{RGB}{50,50,255}\definecolor{colorOrange}{RGB}{255,165,0}\sum_{i=1}^{n} i^3 = \textcolor{red}{1^3} + \textcolor{colorGreen}{2^3} + \textcolor{colorBlue}{3^3} + \ldots + \textcolor{colorOrange}{n^3} = (\textcolor{red}{1} + \textcolor{colorGreen}{2} + \textcolor{colorBlue}{3} + \ldots + \textcolor{colorOrange}{n})^2 = (\sum_{i=1}^n i)^2 $

Share:

Get updates on new content.

No spam, no sales pitch, I promise. I don't like these myself.

Similar Work

Leave a Reply